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Transport Properties of Inhomogeneous
Fluid Mixtures1

L. A. Pozhar2 and K. E. Gubbins3,4

Explicit expressions for the transport coefficients of mixtures of dense, strongly
inhomogeneous fluids are derived in terms of the equilibrium structure factors
of such mixtures, in the framework of the nonequilibrium statistical mechanical
theory suggested by the authors. Particular attention is paid to the diffusion
coefficients of multicomponent inhomogeneous fluids. The case of binary diffu-
sion in inhomogeneous fluids is considered in detail.

1. INTRODUCTION

The thermodynamic properties of dense, strongly inhomogeneous fluids
(both gases and liquids), such as those at interfaces or confined in narrow
capillary pores of several molecular diameters in width, differ markedly
from their counterparts for homogeneous (bulk) fluids. Such fluids and
their mixtures (below called nanofluids or nanofluid mixtures) show new
and modified phase transitions and transport properties, highly selective
adsorption, spatially dependent structure properties, etc. Experimental
investigation of thermodynamic properties of nanofluids and their mixtures
is difficult, because of the complicated structure of the confined systems and
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interfaces, the many variables involved, and the sensitivity of the properties
to experimental conditions.

Although over the last decade there has been significant development
in understanding equilibrium properties of inhomogeneous fluids, much
less progress has been made in the case of transport properties. Such
knowledge is very important for both basic and applied research, since
many industrial processes are known to be limited by diffusion, selectivity,
and/or flow considerations.

Over the last few decades, several successful statistical mechanical
approaches to microscopic theory of transport processes have been devel-
oped for homogeneous fluids (see, e.g., Refs. 1-6). However, there have
been few attempts to develop a statistical mechanical theory of transport
processes in nanofluids, in particular, in nanofluids of liquid-like density
[7-9]. Recently the authors of this paper have suggested a rigorous, non-
equilbrium statistical mechanical approach [10-14] to transport processes
in nanofluids and their mixtures. This approach incorporates and develops
basic mathematical techniques and ideas featured in nonequilibrium statis-
tical mechanics of bulk fluids, including the representation of inter-
molecular interaction potentials as sums of hard-core repulsive and soft
attractive contributions [6]. Also, the approach utilizes the authors'
generalization of the Mori-Zwanzig projection operator method to estab-
lish kinetic and transport theories of nanofluids [10-13], and, recently, of
nanofluid mixtures [14]. These theories tolerate any specific geometry of a
confined system or interface (arbitrary pore shape, width, structure of pore
walls; arbitrary form of an interface, etc.) and supply explicit expressions
for transport coefficients of nanofluids and their mixtures. The derived
transport coefficients are related to equilibrium structure properties (the
densities, the pair and direct correlation functions) of the nanofluids or the
nanofluid mixtures. The above theoretical results have been tested against
nonequilibrium molecular dynamics (NEMD) simulation data for the
shear viscosity of a simple nanofluid confined in narrow slit pores about 5
molecular diameters in width [13]. The theory correctly predicts an
increase in the shear viscosity of up to 50% due to confinement and the
oscillatory nature of the local shear viscosity. The agreement between the
theoretical and the NEMD data is within 1 to 5 %.

2. TRANSPORT PROPERTIES OF NANOFLUID MIXTURES

In this paper we report our latest results on the transport coefficients
of nanofluid mixtures. For further analytical details and explicit expressions
for the viscosities and thermal conductivities of nanofluid mixtures, we refer
readers to our recent paper [14]. However, the diffusion coefficients of the
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nanofluid mixtures are considered in greater detail below in view of their
importance in applications.

In what follows we consider a mixture of N fluid components com-
posed of simple, structureless molecules in a confinement of arbitrary
shape. The walls are formed by simple, structureless molecules, all of the
same species, immovable from their positions in the walls, and thermo-
stated at temperature T. Inhomogeneity of the nanofluid mixture is caused
by the continuous external potential field, represented as a sum of short-
range repulsive and long-range attractive contributions. The repulsive part
describes hard-core-like interactions of the fluid molecules with the wall
molecules forming the confinement. The attractive contributions are caused
by both the long-range intermolecular interactions of the fluid molecules
with the molecules of the walls and an external potential field of a general
nature. A similar representation can be used for the fluid-fluid molecule
interactions by means of the Weeks, Chandler, and Andersen (WCA) or
Barker and Henderson (BH) methods. The repulsive contributions to all of
the potentials of intermolecular interaction are assumed to be hard-core
ones, with the effective diameters atj specific to interactions of the z'th
species molecules with those of the jth species, and with the effective
diameters aiw corresponding to the repulsive interactions of the z'th species
molecules with those of the walls. The attractive parts of the potentials
behave as r-n, n > 2, at r —> oo, where r is the distance between interacting
molecules. The potentials of intermolecular interaction are central and
pairwise. In addition, we assume that there is no chemical reaction in the
system.

Under the above conditions, we can use Eq. (4.1) of Ref. 14 for the
diffusion velocity of the z'th component of the nanofluid mixture and the
generating expression for the tensorial diffusion coefficients, Eq. (4.3),
derived there. This expression represents the local values of the tensorial
diffusion coefficients of the nanofluid mixture in terms of its local equi-
librium pressure, P(q) at the point q. For the nanofluid mixture described
above, the equilibrium pressure can be written in terms of the equilibrium
structure factors of the nanofluid mixture,

where ^(r) is the attractive part of the intermolecular interaction potential
for the z'th and y'th components; kK is the Boltzmann constant; ny(q),
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/= 1,..., N are the equilibrium density profiles of the components; 8tj denotes
Kronecker's delta; bij= \na3ij; gih(q, q — a i j d ] and g i j(q, q') are values of the
pair correlation function calculated at different locations of the /-compo-
nent and y'-component molecules, a = ax\ + ay}-\-azV. is the unit vector
(a2x + a2y + 02z = 1); i, j, k are unit vectors of the directions of the adopted
Cartesian system of coordinates; integration over a is integration over the
surface of the unit sphere, and the integral over r is a regular volume
integral.

Using Eq. (1) one can derive from Eq. (4.3) of Ref. 14 the following
expression for the Fourier image obtained by the time Fourier transform of
the local tensorial mutual diffusion coefficient, Dia(q, to),

where a = 1,..., N, and co is the frequency. In what follows mi is the mass of
a molecule of the /th fluid component of the mixture, the subscript w refers
to the walls, fi=l/kET, the subscript d refers to diffusion, I is the unit
matrix, and the rest of the notation is given below:
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Expression (5) defines the diffusion relaxation time specific to the ;th
component.

The diffusion coefficients of Eq. (2) come into Eq. (4.3) of Ref. 14 with
the gradients of the equilibrium densities of the components, which are
not all linearly independent. The dependent component density can be
excluded upon the use of Eq. (1) . This leads to the final expression for the
theoretical diffusion coefficients of the nanofluid mixture:

where /Mq) = ZfLi Ea(q), p(q) =Zf=i pi(l)> and m is the index of the
linearly dependent density. The diffusion coefficients of Eq. (9), in their
turn, are not linearly independent, and satisfy the condition,

which follows from the restriction £fLi m,.«,-(q) V,(q, co) = 0 on the diffu-
sion velocities of the components, V,-(q, at). At zero frequency, co = 0, from
Eqs. (9) and (10) one can derive the local values of the frequency-inde-
pendent diffusion coefficients of the nanofluid mixture.

2.1. Phenomenological Diffusion Coefficients of Nanofluid Mixtures

The local values of the phenomenological diffusion coefficients Dpij(q) are
defined by the expression for the mass flux of the /th component, Jpi(q),
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where DT
i(q) is the thermal diffusion coefficient, and the dot • denotes

the inner product. On the other hand, the theoretical diffusion coefficients
are proportionality coefficients between the diffusion velocities and the
gradients of the densities of the components,

Substitution of Eq. (9) calculated at to = 0 into Eq. ( 1 1 ) leads to the relation,

between local values of the theoretical and phenomenological diffusion
coefficients.

2.2. Binary Diffusion in Nanofluid Mixtures

In the case of weak inhomogeneity of the nanofluid mixture, the terms
with sums on the right hand side of Eq. (2) can be neglected, and from
Eqs. (2), (4), (5), (9), and (10) it follows that the theoretical diffusion coef-
ficient of the binary mixture, [D l 2(q)] r , at w = 0 is

where

£",-/(q) is given by Eq. (8), and P 1 ( q ) is defined by Eq. (9) .
From Eqs. (13) and (12) one can derive the following relation between

the two phenomenological diffusion coefficients of a weakly inhomoge-
neous binary mixture of nanofluids,



where Dp
12 is the homogeneous reduction of the corresponding pheno-

menological coefficient, Eq. (12), expressed in terms of the theoretical diffu-
sion coefficient, Eq. (13), calculated for the homogeneous mixture. This
relation has been derived rigorously in the framework of a microscopic
approach in Ref. 17 for a binary mixture of hard spheres in the framework
of the Chapman-Enskog method. Here we have generalized this result and
proved that the same relation also holds for a binary mixture of arbitrary
bulk fluids, provided that their intermolecular interaction potentials can be
divided into a sum of hard-core repulsive and soft attractive contributions.

From the results of Ref. 14 it follows that the diffusion coefficients of
the nanofluid mixture depend strongly on the equilibrium pressure of the
mixture, which in the above case depends explicitly on the attractive part
of the intermolecular interaction potentials [see Eq. (1)] . This also means
that the values of the diffusion coefficients are very sensitive to a particular
approximation of the equilibrium pressure of the nanofluid mixture. In this
respect, the diffusion coefficients differ significantly from the viscosities
and thermal conductivity coefficients of such mixtures, Eqs. (3.24)-(3.26)
and (3.32) of Ref. 14, which do not depend on the equilibrium pressure
explicitly.

3. CONCLUSIONS

Calculation of the transport coefficients based on Eqs. (3.24)-(3.26)
and (3.32) of Ref. 14 and the above equations [Eqs. (13), (9), and (2) ]
require data on equilibrium structure factors of the nanofluid mixtures,
in particular, on the number densities of the components n i(q) and the
contact values of their pair correlation functions, gij(q, q — CTijCT). These
coefficients also depend on the effective hard-core diameters, aih evaluated
for the intermolecular interaction potentials, which are divided into a sum
of hard-core repulsive and soft attractive contributions. Such inter-
molecular interaction potentials can be obtained from more realistic inter-
molecular interaction potentials (e.g., the Lennard-Jones model potentials)
by means of Weeks, Chandler, and Andersen (WCA) [15] or Barker and
Henderson (BH) [16] methods. The WCA method supplies hard-core
diameters oiĵ

CA which depend on both the temperature and the equi-
librium number densities of the components of the mixture, whereas the
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In the particular case of a binary mixture of bulk fluids, this expression
reduces to



BH procedure leads to aij
BH's that depend only on temperature. From a

dynamical point of view the differences between collisional encounters
described by the model potentials of this theory and more realistic ones are
small.

In order to avoid calculation of aij's for every local set of values of
n i(q), /= 1,..., N, one can use the BH choice of hard-core diameters, which
do not depend on the densities of the components or the density of the
mixture. In the case of the nanofluid mixtures confined in narrow capillary
pores, this seems to be the best choice for the hard-core diameters [6].

The structure properties of the nanofluid mixtures can be obtained by
direct equilibrium computer simulations. These results can be expressed in
dimensionless form and, as such, are valid for any aij and n i(q). Another
possibility is to determine the structure by analytical means from integral
equations of equilibrium statistical mechanics and/or in the framework of
density functional theory. For practical purposes direct computer simula-
tion data seem to be more useful, as they should reflect the structure of a
particular nanofluid system in greater detail.

ACKNOWLEDGMENTS

This work was supported by a Cooperation in Applied Science
and Technology (CAST) grant from the National Research Council, by
Grant CTS-9508680 from the National Science Foundation, and by Grant
UC2-321 from the Civilian Research and Development Foundation. L.A.P.
thanks Cornell University for their hospitality.

REFERENCES

1. J. Karkheck and G. Stell, J. Chem. Phys. 75:1475 (1981) .
2. S. A. Rice and P. Gray, The Statistical Mechanics of Simple Fluids I Interscience, New

York, 1965).
3. A. R. Altenberger, J. S. Dahler, and M. Tirrell, J. Chem. Phys. 86:2909 (1987).
4. H. T. Davis, in Advances in Chemical Physics, Vol. XXIV, I. Prigogine and S. Rice, eds.

(Elsevier, The Netherlands, 1973), p. 257.
5. G. Stell, J. Karkheck, and H. van Beijeren, J. Chem. Phys. 79:3166 (1983).
6. W. Sung and J. S. Dahler, J. Chem. Phys. 80:3025 (1984).
7. H. T. Davis, Chem. Eng. Commun. 58:413 (1987).
8. T. K. Vanderlick and H. T. Davis, J. Chem. Phys. 87:1791 (1987).
9. I. Bitsanis, T. K. Vanderlick, M. Tirrell, and H. T. Davis, J. Chem. Phys. 89:3152 (1988).

10. L. A. Pozhar and K. E. Gubbins, J. Chem. Phys. 94:1367 (1991) .
11. L. A. Pozhar and K. E. Gubbins, J. Chem. Phys. 99:8970 (1993).
12. L. A. Pozhar, Transport Theory of Inhomogeneous Fluids (World Scientific, Singapore,

1994).

Pozhar and Gubbins812



13. E. Akhmatskaya, B. D. Todd, P. J. Daivis, D. J. Evans, K. E. Gubbins, and L. A. Pozhar,
J. Chem. Phys. 106:4684 (1997).

14. L. A. Pozhar and K. E. Gubbins, Phys. Rei: £56:5367 (1997).
15. J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys. 54:5237 ( 1 9 7 1 ) .
16. J. A. Barker and D. Henderson, J. Chem. Phys. 47:4714 (1967).
17. M. K. Tham and K. E. Gubbins, J. Chem. Phys. 55:268 ( 1 9 7 1 ) .

813Transport Properties of Inhomogeneous Fluid Mixtures


